Understanding Saul’yev-Type Unconditionally Stable Schemes from Exponential Splitting

نویسنده

  • Siu A. Chin
چکیده

Saul’yev-type asymmetric schemes have been widely used in solving diffusion and advection equations. In this work, we show that Saul’yev-type schemes can be derived from the exponential splitting of the semidiscretized equation which fundamentally explains their unconditional stability. Furthermore, we show that optimal schemes are obtained by forcing each scheme’s amplification factor to match that of the exact amplification factor. A new second-order explicit scheme is found for solving the advection equation with the identical amplification factor as the implicit Crank–Nicolson algorithm. Other new schemes for solving the advection–diffusion equation are also derived. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1961–1983, 2014

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unconditionally Stable Parallel Difference Scheme for Telegraph Equation

We use an unconditionally stable parallel difference scheme to solve telegraph equation. This method is based on domain decomposition concept and using asymmetric Saul’yev schemes for internal nodes of each sub-domain and alternating group implicit method for sub-domain’s interfacial nodes. This new method has several advantages such as: good parallelism, unconditional stability and better accu...

متن کامل

Explicit schemes for parabolic and hyperbolic equations

Standard explicit schemes for parabolic equations are not very convenient for computing practice due to the fact that they have strong restrictions on a time step. More promising explicit schemes are associated with explicit-implicit splitting of the problem operator (Saul’yev asymmetric schemes, explicit alternating direction (ADE) schemes, group explicit method). These schemes belong to the c...

متن کامل

High-accuracy alternating segment explicit-implicit method for the fourth-order heat equation

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...

متن کامل

High-accuracy Alternating Difference Scheme for the Fourth-order Diffusion Equation

In this paper, a highly accurate parallel difference scheme for the fourth-order diffusion equation is studied. Based on a group of new Saul’yev type asymmetric difference schemes, a high-order, unconditionally stable and parallel alternating group explicit scheme is derived. The scheme is fourth-order truncation error in space, which is much more accurate than the known methods. Numerical expe...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014